Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We expand upon the synthetic utility of anionic rhenium complex Na[(BDI)ReCp] (1, BDI = N,N’-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate) to generate several rhenium–phosphorus complexes. Complex 1 reacts in a metathetical manner with chlorophosphines Ph2PCl, MeNHP-Cl, and OHP-Cl to generate XL-type phosphido complexes 2, 3, and 4, respectively (MeNHP-Cl = 2-chloro-1,3-dimethyl-1,3,2-diazaphospholidine; OHP-Cl = 2-chloro-1,3,2-dioxaphospholane). Crystallographic and computational investigations of phosphido triad 2, 3, and 4 reveal that increasing the electronegativity of the phosphorus substituent (C < N < O) results in a shortening and strengthening of the rhenium–phosphorus bond. Complex 1 reacts with iminophosphane Mes*NPCl (Mes* = 2,4,6-tritert-butylphenyl) to generate linear iminophosphanyl complex 5. In the presence of a suitable halide abstraction reagent, 1 reacts with the dichlorophosphine iPr2NPCl2 to afford cationic phosphinidene complex 6+. Complex 6+ may be reduced by one electron to form 6•, a rare example of a stable, paramagnetic phosphinidene complex. Spectroscopic and structural investigations, as well as computational analyses, are employed to elucidate the influence of the phosphorus substituent on the nature of the rhenium–phosphorus bond in 2 through 6. Furthermore, we examine several common analogies employed to understand metal phosphido, phosphinidene, and iminophosphanyl complexes.more » « less
-
Dinitrogen is a challenging molecule to reduce to useful products under ambient conditions. The range of d-block metal complexes that can catalyze dinitrogen reduction to ammonia or tris(silyl)amines under ambient conditions has increased recently but lacks electropositive metal complexes, such as those of the f-block, which lack filled d-orbitals that would support classical binding modes of N2. Here, metallacyclic phenolate structures with lanthanide or group 4 cations can bind dinitrogen and catalyze its conversion to bis(silyl)amines under ambient conditions. The formation of this unusual product is controlled by metallacycle sterics. The group 4 complexes featuring small cavities are most selective for bis(silyl)amine, while lanthanide complexes and the solvated uranium(IV) congener, with larger cavities, can also make a conventional tris(silyl)amine product. These results offer new catalytic applications for plentiful titanium and more earth-abundant members of the lanthanides that are also less toxic than many base metals used in catalysis.more » « less
An official website of the United States government
